Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent

Bo Li

Department of Mathematics and Center for Theoretical Biological Physics (CTBP) University of California, San Diego (UCSD), USA

Collaborators

Jianwei Che (Genomics Inst. of Novartis Res. Found) Li-Tien Cheng (Math, UCSD) Joachim Dzubiella (Phys., Tech. Univ. Munich) J. Andrew McCammon (Biochem & CTBP, UCSD) Piotr Setny (Biophysics, Univ. of Warsaw) Zhongming Wang (Math & Biochem, UCSD) Yang Xie (ME, Georgia Tech)

Support

NSF, DOE, DFG, Sloan, NIH, HHMI, CTBP

OUTLINE

- 1. Introduction
- 2. A variational model of solvation
- 3. The level-set method
- 4. Numerical results
- 5. Electrostatic free energy
- 6. Conclusions

1. Introduction

Established implicit-solvent models

Surface energy PB/GB calculations

- Get data of biomolecules.
- Generate solute-solvent interface.
- Calculate surface energy.

 $G = G_{np} + G_p$

Calculate the electrostatic free energy using PB/GB with the surface as dielectric boundary.

solute atoms

$$G_{np} = \sum_{i}^{N} a_i S_i + b_i + PV + G_{vdw} \quad (S_i: Surface area)$$

6

Example 1. Capillary evaporation in hydrophobic confinement. 200

Koishi et al., Phys. Rev. Lett., 93, 185791, 2004. 7

E₂ (11 Å)

E₃ (15 Å)

E4 (16 Å)

Example 2. A receptorligand (pocket wallmethane atom) system.

Setny, J. Chem. Phys., 127, 054505, 2007.

MD: weakly solvated pocket, strong hydrophobic attraction.

SASA/MSA: Onset of attraction is wrong by 2-4 Angstroms!

Example 3. Evaporation in proteins.

MD simulations of the melittin protein tetramer

- Water in hydrophobic core
- Stable nanobubble

Liu et al., Nature, 437, 159, 2005.

- More MD simulations
 - Electrostatics
 - Curvature

Giovambattista *et al.,* PNAS, 105, 2274, 2008.

t = 0 ps

t = 300 ps

Possible issues of fixed-surface models

- Hydrophobic cavities
- Curvature correction
- Decoupling of polar and nonpolar contributions

Strong curvature effects at small scales

Symbols: MD, SPC/E water, *P*=1bar, *T*=300K.

$$\gamma = \gamma_0 (1 - 2\tau H)$$

- au: the Tolman length
- *H*: mean curvature

Huang, Geissler, & Chandler, J. Phys. Chem. B, 105, 6704, 2001.

2. A Variational Model of Solvation

A variational implicit-solvent model (VISM)

- Dzubiella, Swanson, & McCammon, Phys. Rev. Lett., 96, 087802, 2006.
- Dzubiella, Swanson, & McCammon, J. Chem. Phys., 124, 084905, 2006.

Guiding principles

Solvation structure

- = Solute atomic positions + Solute-solvent interface.
- Free-energy minimization determines solute-solvent interfaces.
- Free energy couples different interactions: polar, nonpolar, dispersive, etc.

A free-energy functional Ω_w $G[\Gamma] = G_{geom}[\Gamma] + G_{vdW}[\Gamma] + G_{elec}[\Gamma]$ $G_{geom}[\Gamma] = Pvol(\Omega) + \int_{\Gamma} \gamma(\vec{r}) dS$ $c_i^{\infty}, q_i, \rho_w$ $Pvol(\Omega)$: Creation of a cavity in the solvent P = Liquid-vapor pressure difference $\int_{\Gamma} \gamma(\vec{r}) dS$: Molecular rearrangement near the interface $\gamma = \gamma(\vec{r})$: Surface tension $\gamma(\vec{r}) = \gamma_0 [1 - 2\tau H(\vec{r})]$ (Scaled Particle Theory) γ_0 : the (planar) surface tension τ : the Tolman length, a fitting parameter $H = H(\vec{r})$: mean curvature 13

 $G_{geom}[\Gamma] = Pvol(\Omega) + \gamma_0 area(\Gamma) - 2\gamma_0 \tau \int_{\Gamma} HdS \left(+c_K \int_{\Gamma} KdS \right)$

Hadwiger's Theorem

Let C = the set of all convex bodies,

M = the set of finite union of convex bodies.

If $F: M \to R$ is

- rotationally and translationally invariant,
- additive:

 $F(U \cup V) = F(U) + F(V) - F(U \cap V) \qquad \forall U, V \in M,$

conditionally continuous:

then

$$F(U) = aVol(U) + bArea(\partial U) + c \int_{\partial U} H dS + d \int_{\partial U} K dS \quad \forall U \in M.$$

Application to nonpolar solvation

Roth, Harano, & Kinoshita, Phys. Rev. Lett., 97, 078101, 2006. Harano, Roth, & Kinoshita, Chem. Phys. Lett., 432, 275, 2006.

 $U_i, U \in C, U_i \rightarrow U \Rightarrow F(U_i) \rightarrow F(U),$

$$G_{vdW}[\Gamma] = \rho_w \int_{\Omega_w} U(\vec{r}) dV$$

solute-solvent van der Waals interaction

$$U(\vec{r}) = \sum_{i} U_{i}(|\vec{r} - \vec{r}_{i}|)$$
$$U_{i}(r) = U_{LJ,i}(r) = 4\varepsilon_{i} \left[\left(\frac{\sigma_{i}}{r}\right)^{12} - \left(\frac{\sigma_{i}}{r}\right)^{6} \right]$$

• $G_{elec}[\Gamma]$ - Electrostatic free energy

- ► The Poisson-Boltzmann (PB) theory
- ► The generalized Born (GB) model

Coupling solute molecular mechanics with implicit solvent

Molecular mechanical interactions of solute atoms

$$V[\vec{r}_{1},...,\vec{r}_{N}] = \sum_{i,j} W_{bond}(\vec{r}_{i},\vec{r}_{j}) + \sum_{i,j,k} W_{bend}(\vec{r}_{i},\vec{r}_{j},\vec{r}_{k}) + \sum_{i,j,k,l} W_{torsion}(\vec{r}_{i},\vec{r}_{j},\vec{r}_{k},\vec{r}_{l}) + \sum_{i,j} W_{LJ}(\vec{r}_{i},\vec{r}_{j}) + \sum_{i,j} W_{Coulomb}(\vec{r}_{i},Q_{i};\vec{r}_{j},Q_{j})$$

An effective total Hamiltonian

$$H[\Gamma; \vec{r}_1, ..., \vec{r}_N] = V[\vec{r}_1, ..., \vec{r}_N] + G[\Gamma; \vec{r}_1, ..., \vec{r}_N],$$

min $H[\Gamma; \vec{r}_1, ..., \vec{r}_N] \implies$ Equilibrium conformations

3. The Level-Set Method

The level-set method

Interface motion

 $V_n = V_n(\vec{r},t)$ for $\vec{r} \in \Gamma(t)$

• Level-set representation $\Gamma(t) = \{ \vec{r} \in \Omega : \varphi(\vec{r}, t) = 0 \}$

The level-set equation $\varphi_t + V_n |\nabla \varphi| = 0$

$$\begin{aligned} \varphi(\vec{r}(t),t) &= 0 & \Longrightarrow & \varphi_t + \nabla \varphi \cdot \vec{r}_t = 0 \\ \nabla \varphi \cdot \vec{r}_t &= \left(\frac{\nabla \varphi}{|\nabla \varphi|} \cdot \vec{r}_t\right) |\nabla \varphi \models (\vec{n} \cdot \vec{r}_t) |\nabla \varphi \models V_n |\nabla \varphi| \end{aligned}$$

Examples of normal velocity

Geometrically based motion

Notion by mean curvature $V_n = -H$

• Motion by the surface Laplacian of mean curvature $V_n = \Delta_s H$

External field

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \Omega_{-} \cup \Omega_{-} \\ u = -H & \text{on } \Gamma \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega \\ V_n = \begin{bmatrix} \frac{\partial u}{\partial n} \end{bmatrix} & \text{on } \Gamma \end{cases}$$

Level-set formulas of geometrical quantities

Gaussian curvature $K = \vec{n} \cdot adj(He(\varphi))\vec{n}$

Surface integral $\int_{\Gamma} f(\vec{r}) dS = \int_{R^3} f(\vec{r}) \delta(\varphi) dV$

• Volume integral $\int_{\Omega} f(\vec{r}) dV = \int_{R^3} f(\vec{r}) [1 - H(\varphi)] dV$

Topological changes

- Merging
- ▶ Break-up
- Disappearing
- Nucleation?

Accuracy issues

- Interface approximation
- Conservation of mass
- Rigorous analysis

Application to variational solvation

- Cheng, Dzubiella, McCammon, & Li, J. Chem. Phys. 127, 084503, 2007.
- Cheng, Xie, Dzubiella, McCammon, Che, & Li, J. Chem. Theory Comput., 5, 257, 2009.
- Cheng, Wang, Setny, Dzubiella, Li, & McCammon, J. Chem. Phys., 2009.

Relaxation

$$\begin{split} \varphi_{t} + V_{n} \mid \nabla \varphi \mid &= 0 \\ \frac{d\vec{r}_{i}}{dt} = -\nabla_{\vec{r}_{i}} H[\Gamma; \vec{r}_{1}, ..., \vec{r}_{N}] = -\nabla_{\vec{r}_{i}} V[\vec{r}_{1}, ..., \vec{r}_{N}] - \nabla_{\vec{r}_{i}} G[\Gamma] \\ V_{n} &= -\delta_{\Gamma} H[\Gamma; , \vec{r}_{1}, ..., \vec{r}_{N}] = -\delta_{\Gamma} G[\Gamma] \\ \delta_{\Gamma} G[\Gamma](\vec{r}) &= P + 2\gamma_{0} [H(\vec{r}) - \tau K(\vec{r})] - \rho_{w} U(\vec{r}) + \delta_{\Gamma} G_{elec}[\Gamma] \\ \delta_{\Gamma} \int_{\Omega} dV = 1 \qquad \delta_{\Gamma} \int_{\Gamma} dS = -2H \qquad \delta_{\Gamma} \int_{\Gamma} HdS = -K \end{split}$$

Algorithm

Step 1. Input parameters and initialize level-set function Step 2. Calculate the normal and curvatures Step 3. Calculate and extend the normal velocity Step 4. Solve the level-set equation Step 5. Reinitialize the level-set function Step 6. Solve ODEs for the motion of solute particles Step 7. Set $t := t + \Delta t$ and go to Step 2

New level-set techniques

- Pre-computation of the potential
- Numerical regularization
- Fast numerical integration
- Local level-set method

Efficiency

- 4,000 solute atoms, 50x50x50 grid size, a good initial
 - guess 5 minutes
- 4,000 solute atoms, high resolution, a bad initial guess
 - \implies about 2 4 hours
- Dynamics: a different situation

4. Numerical Results

Comparison of PMF by the level-set (circles) and MD (solid line) calculations.

Paschek, J. Chem. Phys., 120, 6674, 2004. 26

Comparison of the level-set and MD calculations for the two paraffin plates.

MD: Koishi *et al.* Phys. Rev. Lett., 93, 185701, 2004; J. Chem. Phys., 123, 204707, 2005.

Two helical alkanes (~30 atoms)

Parameters: P = 0, $\gamma_0 = 0.176$, $\tau = 1.2$, $\rho_w = 0.033, \ \sigma = 3.538, \ \varepsilon = 0.2654.$ 28

Solvation free energy from MD $\simeq -1k_BT$

Best fit Tolman length $\tau = 1.2 \ \text{\AA}$

Side note: enthalpy-entropy compensation in solvation:

Solvation free energy is a difference of big numbers:

Solvation entropy $\simeq 49k_BT$

Solvation enthalpy $\simeq -50k_BT$

A big problem for solvation free-energy calculations!

A Hydrophobic receptor-ligand system

Each wall consists of 4,242 atoms.

System setup for the levelset VISM calculation.

Free energy vs. the distance between ligand and wall: a bimodal behavior.

A model system of 4 atoms

Left: initial positions. Right: final positions.

34

A benzene molecule

A two-particle system: the surface motion influences the particle motion

5. Electrostatic Free Energy

$$G_{elec}[\Gamma] = \frac{1}{32\pi^{2}\varepsilon_{0}} \left(\frac{1}{\varepsilon_{w}} - \frac{1}{\varepsilon_{m}}\right) \int_{\Omega_{w}} \left|\sum_{i=1}^{N} \frac{Q_{i}(\vec{r} - \vec{r}_{i})}{\left|\vec{r} - \vec{r}_{i}\right|^{3}}\right|^{2} dV$$
$$\delta_{\Gamma}G_{elec}[\Gamma](\vec{r}) = -\frac{1}{32\pi^{2}\varepsilon_{0}} \left(\frac{1}{\varepsilon_{w}} - \frac{1}{\varepsilon_{m}}\right) \left|\sum_{i=1}^{N} \frac{Q_{i}(\vec{r} - \vec{r}_{i})}{\left|\vec{r} - \vec{r}_{i}\right|^{3}}\right|^{2}$$

A Single charged particle $G(R) = 4\pi (R^2 - 2\tau R) + 16\pi \rho_w \left(\frac{\sigma^{12}}{9R^9} - \frac{\sigma^6}{3R^3}\right) - \frac{Q^2}{8\pi\varepsilon_0} \left(\frac{1}{\varepsilon_m} - \frac{1}{\varepsilon_w}\right)$

38

The Poisson-Boltzmann (PB) theory

Electrostatic free energy

$$\begin{split} G_{elec}[\Gamma] &= \int \left[-\frac{\varepsilon(\vec{r})}{8\pi} |\nabla \psi(\vec{r})|^2 + \rho_f(\vec{r})\psi(\vec{r}) - \beta^{-1}\chi_w \sum_j c_j^\infty (e^{\beta q_j \psi(\vec{r})} - 1) \right] dV \\ \psi &= \text{electrostatic potential} \\ \varepsilon(\vec{r}) &= \begin{cases} \varepsilon_m & \text{in solute region } \Omega_m \\ \varepsilon_w & \text{in solvent region } \Omega_w \end{cases} \\ \rho_f &= \text{fixed charges of molecular atoms} \\ \chi_w &= \text{characteristic function of } \Omega_w \end{split}$$

PBE:
$$\nabla \cdot \varepsilon(\vec{r}) \nabla \psi(\vec{r}) + 4\pi \beta^{-1} \chi_w \sum_j c_j^{\infty} q_j e^{-\beta q_j \psi(\vec{r})} = -4\pi \rho_f(\vec{r})$$

39

Effective electrostatic surface force

$$\delta_{\Gamma} G_{elec}[\Gamma](\vec{r}) = \frac{1}{8\pi} \left(\frac{1}{\varepsilon_m} - \frac{1}{\varepsilon_s} \right) |\varepsilon(\vec{r}) \nabla \psi(\vec{r})|^2 - \beta^{-1} \sum_j c_j^{\infty} (e^{\beta q_j \psi(\vec{r})} - 1)$$

Charge neutrality, convexity, and Jensen's inequality $\Longrightarrow \delta_{\Gamma}G_{elec}[\Gamma] > 0$ Force attractive to solutes! See: B. Chu, Molecular Forces, Wiley, 1967.

Lemma

$$\int (\delta_{\Gamma,z} u_{\Gamma}) v dV = (u_m - u_w) v(z) \qquad \Omega_m$$

40

 $\Omega_{\rm w}$

n

Electrostatic free-energy functional of ionic concentratios

$$G[c] = \int_{\Omega} \left\{ \frac{1}{2} \rho \psi + \beta^{-1} \sum_{j=1}^{M} c_j \left[\ln(\Lambda^3 c_j) - 1 \right] - \sum_{j=1}^{M} \mu_j c_j \right\} dV$$

$$\rho(x) = \rho_f(x) + \sum_{j=1}^{M} q_j c_j(x)$$

$$\nabla \cdot \varepsilon_0 \varepsilon \nabla \psi = -4\pi \left(\rho_f + \sum_{j=1}^{M} q_j c_j \right)$$

+ Boundary Conditions (e.g., $\psi = 0$ on $\partial\Omega$)

 \blacktriangleright Λ : the thermal de Broglie wavelength

▶ μ_j : chemical potential for the *j*th ionic species Equilibrium conditions

 $(\delta G[c])_j = q_j \psi + \beta^{-1} \ln(\Lambda^3 c_j) - \mu_j = 0 \iff$ Boltzmann distributions Minimum electrostatic free-energy

$$G_{min} = \int_{\Omega} \left[-\frac{\varepsilon_0 \varepsilon}{8\pi} |\nabla \psi|^2 + \rho_f \psi - \beta^{-1} \sum_{j=1}^M c_j^\infty \left(e^{-\beta q_j \psi} - 1 \right) \right] dV$$

2

Theorem (B.L. 2009).

- The functional G has a unique minimizer $c = (c_1, \ldots, c_M)$ which is also the unique equilibrium.
- There exist constants $\theta_1 > 0$ and $\theta_2 > 0$ such that $\theta_1 \le c_j(x) \le \theta_2 \qquad \forall x \in \Omega \ \forall j = 1, \dots, M.$
- The equilibrium concentrations and corresponding potential are related by the Boltzmann distributions.
- The corresponding potential is the unique solution to the PBE.

Remark. Bounds are not physical! A drawback of the PB theory.

Proof. By the direct method in the calculus of variations, using:

Convexity.

 $G[\lambda u + (1 - \lambda)v] \leq \lambda G[u] + (1 - \lambda)G[v] \quad (0 < \lambda < 1);$

- Lower bound. Let α ∈ ℝ. Then the function s → s(ln s + α) is bounded below on (0,∞);
- ► A lemma (cf. next slide). Q.E.D.

$$G[c] = \int_{\Omega} \left\{ \frac{1}{2} \rho \psi + \beta^{-1} \sum_{j=1}^{M} c_j \left[\ln(\Lambda^3 c_j) - 1 \right] - \sum_{j=1}^{M} \mu_j c_j \right\} dV$$

Lemma (B.L. 2009). Given $c = (c_1, \ldots, c_M)$. There exists $\hat{c} = (\hat{c}_1, \ldots, \hat{c}_M)$ that satisfies the following:

- ĉ is close to c;
- $G[\hat{c}] \leq G[c];$

▶ there exist constants $\theta_1 > 0$ and $\theta_2 > 0$ such that

$$\theta_1 \leq \hat{c}_j(x) \leq \theta_2 \qquad \forall x \in \Omega \ \forall j = 1, \dots, M.$$

Proof. By construction using the fact that the entropic change is very large for $c_j \approx 0$ and $c_j \gg 1$. **Q.E.D.**

SQA

Electrostatic free-energy functional

$$G[c] = \int_{\Omega} \left\{ \frac{1}{2} \rho \psi + \beta^{-1} \sum_{j=0}^{M} c_j \left[\ln(a_j^3 c_j) - 1 \right] - \sum_{j=1}^{M} \mu_j c_j \right\} dV$$

$$\rho(x) = \rho_f(x) + \sum_{j=1}^{M} q_j c_j(x)$$

$$\nabla \cdot \varepsilon_0 \varepsilon \nabla \psi = -4\pi \left(\rho_f + \sum_{j=1}^{M} q_j c_j \right)$$

+ Boundary Conditions (e.g., $\psi = 0$ on $\partial\Omega$)

$$c_0(x) = a_0^{-3} \left[1 - \sum_{i=1}^{M} a_i^3 c_i(x) \right]$$

$$a_j (1 \le j \le M)$$
: linear size of ions of *j*th species

- \blacktriangleright *a*₀: linear size of a solvent molecule
- ► *c*₀: local concentration of solvent

Remark. G[c] is convex in $c = (c_1, \ldots, c_M)$.

Theorem (B.L. 2009). The functional G has a unique minimizer (c_1, \ldots, c_M) which is also the unique local minimizer. It is characterized by the following two conditions:

▶ Bounds. There exist $\theta_1, \theta_2 \in (0, 1)$ such that

$$heta_1 \leq a_j^3 c_j(x) \leq heta_2 \qquad orall x \in \Omega \ orall j = 0, 1, \dots, M;$$

• Equilibrium conditions (i.e., $(\delta G[c])_j = 0$ for j = 1, ..., M)

$$\left(\frac{a_j}{a_0}\right)^3 \log\left(a_0^3 c_0\right) - \log\left(a_j^3 c_j\right) = \beta\left(q_j \psi - \mu_j\right) \quad \forall j = 1, \dots, M.$$

Proof. Similar to the case without size modification. **Q.E.D. Remark.** The bounds are non-physical microscopically! **Lemma** (B.L. 2009). Given $c = (c_1, \ldots, c_M)$. There exists $\hat{c} = (\hat{c}_1, \ldots, \hat{c}_M)$ that satisfies the following:

- ĉ is close to c;
- $G[\hat{c}] \leq G[c];$
- ▶ there exist θ_1 and θ_2 with $0 < \theta_1 < \theta_2 < 1$ such that

$$\theta_1 \leq a_j^3 \hat{c}_j(x) \leq \theta_2 \qquad \forall x \in \Omega \ \forall j = 0, 1, \dots, M.$$

Proof. By construction in two steps. First, take care of c_0 . Then, take care of c_j (j = 1, ..., M). **Q.E.D.**

6. Conclusions

Variational implicit-solvent model

- Coupling polar and nonpolar interactions
- Capturing hydrophobic cavities
- Curvature correction

Extension

- Coupling with molecular mechanics
- Electrosttic surface forces

A level-set method for variational solvation

- Capturing hydrophobic cavities
- New level-set techniques

Poisson-Boltzmann theory

- Mathematical analysis: bounds
- Extension to include the excluded volume effect
- Further development
 - Coupling the PB and level-set calculations
 - Stochastic level-set VISM
 - Solvent dynamics: Rayleigh-Plesset equation
 - Multiscale modeling and simulation
 - Mathematical problems
 - Derivation of the free-energy functional
 - Constrained motion by mean curvature

References

- J. Dzubiella, J.M.J. Swanson, & J.A. McCammon, Phys. Rev. Lett., 96, 087802, 2006.
- J. Dzubiella, J.M.J. Swanson, & J.A. McCammon, J. Chem. Phys., 124, 084905, 2006.
- L.-T. Cheng, J. Dzubiella, J.A. McCammon, & B. Li, J. Chem. Phys., 127, 084503, 2007.
- J. Che, J. Dzubiella, B. Li, & J.A. McCammon, J. Phys. Chem. B, 112, 3058, 2008.
- L.-T. Cheng, Y. Xie, J. Dzubiella, J.A. McCammon, J. Che, & B. Li, J. Chem. Theory Comput., 5, 257, 2009.
- B. Li, SIAM J. Math. Anal., 40, 2536, 2009.
- B. Li, Nonlinearity, 19, 2581, 2009.
- L.-T. Cheng, Z. Wang, P. Setny, J. Dzubiella, B. Li, & J.A. McCammon, J. Chem. Phys., 2009 (accepted).
- P. Setny, Z. Wang, L-T. Cheng, B. Li, J. A. McCammon, & J. Dzubliella, 2009 (submitted).

Thank You !